بررسی روشهای تحلیلی و عددی حل معادلات انتگرال تاخیری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم
- نویسنده منوچهر خاصی
- استاد راهنما فریده قریشی علی ذاکری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
تحلیل عددی معادلات دیفرانسیل و انتگرال تأخیری به واسطه اهمیت آنها در مدلسازی عینی و کاربردی برخی پدیده های طبیعی از اهمیت ویژه ای برخورئار هستند. در یکصد سال گذشته کارهای قابل ملاخظه ای در زمینه نظریه، کاربردها و حل عددی این معادلات انجام شده است. در این رساله سعی بر آن است که انواع معادلات انتگرال تأخیری، تاریخچه، کاربردها و نظریه انها و همچنین خواص کمی و کیفی آنها مورد بررسی قرار گیرد. لیکن هدف اصلی این مقاله بررسی و تحلیل معادلات انتگرال تأخیری حالت وابسته، پیاده سازی روش هم محلی تکه ای روی آنها و آنالیز همگرایی و همچنین بررسی چالشهای موجود در حل عددی این نوع از معادلات می باشد. مبنای کار تحقیقاتی در این پایان نامه مبتنی بر مراجع [42]، [5] و [27] می باشد. فصل چهارم بخش اصلی پایان نامه را تشکیل می دهد که منحصراً مربوط به این پایان نامه بوده که یافته های جدید نیز در این فصل گردآوری شده است.
منابع مشابه
بهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملموجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات
این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.
متن کاملحل عددی معادلات انتگرال
معادلات انتگرال در زمینه های گسترده ای از علوم و مهندسی ظاهر می شوند. معادلات انتگرال انواع مختلفی دارد، در این پایان نامه معادلات انتگرال یک بعدی و دو بعدی مورد بررسی قرار می گیرند. در فصل اول به معرفی معادلات انتگرال و بعضی از مفاهیم مقدماتی می پردازیم. فصل دوم را با معرفی موجک ها آغاز می کنیم. سپس با استفاده از پایه های موجکی معادلات انتگرال فردهلم را حل خواهیم کرد. سرانجام در فصل آخر توابع...
روش های تحلیلی و عددی برای حل معادلات دیفرانسیل کسری تاخیری و بررسی پایداری آن ها
در این پایان نامه معادلات دیفرانسیل کسری تاخیری خطی را در نظر گرفته ایم. برای حل این معادلات از روش های تحلیلی و عددی استفاده کرده ایم. پایداری جواب روی پارامترهای معادله دیفرانسیل و همچنین پایداری مجانبی مورد بررسی قرار گرفته است، به علاوه پایداری ورودی محدود خروجی محدود bibo نیز بحث شده است. قابلیت اجرایی بودن روش تبدیل لاپلاس برای تحلیل پایداری به طور مشترک با معادله مشخصه متناظر آن که به ط...
روش های شبه تحلیلی عددی برای حل معادلات انتگرال، انتگرال دیفرانسیل و مسائل اشتورم لیوویل
در این رساله، جواب های عددی و تقریبی کلاس هایی از معادلات انتگرال و انتگرال دیفرانسیل غیر خطی را مورد مطالعه قرار خواهیم داد. با بیان قضایای وجود و منحصربفردی، روشهای پیشرفته عددی مانند هم محلی، تبدیل دیفرانسیل و خطی سازی را بری حل معادلات انتگرال ولترا-فردهلم غیر خطی، معادلات انتگرال منفرد و معادلات انتگرال دیفرانسیل دو بعدی غیر خطی با اعمال برخی شرایط قابل اثبات روی هسته معادلات و توابع غیر خ...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023